
	

aim42 – systematic software evolution and improvement - Whitepaper		

V 
2.

0 
– 

Ju
ne

 2
01

7	

	
Architecture	Improvement	Method	

Methodical	Improvement	of	Software	Systems	and	–Architectures	

Dr.	Gernot	Starke	
http://aim42.org	

	
	

This	paper	outlines	aim42,	the	systematic	and	pragmatic	approach	to	improve	software	systems	
and	architectures.		aim42	works	iteratively	in	three	phases	(analyze,	evaluate,	improve)	
supported	by	crosscutting	activities.	For	each	phase,	aim42	proposes	proven	and	established	
practices	and	patterns.	The	method	addresses	both	business	and	technical	stakeholders	of	
software	systems.	aim42	relies	on	very	few	core	concepts,	making	the	method	easy	to	
understand	and	implement	in	practice.		aim42	does	not	require	specific	tool	support	and	is	
therefore	completely	vendor-agnostic.	
	
aim42	is	developed	by	an	active	community	in	open-source	style,	backed	by	extensive	industrial	
experience	and	scientific	research.	It	has	proven	to	work	under	time	and	budget	constraints	in	
various	industries.		

1			Introduction		
Real-world	software	systems	regularly	need	to	be	maintained	for	various	reasons,	often	under	
severe	budget	and	time	constraints.	Software	owners	and	other	stakeholders	often	prioritize	
new	business	requirements	higher	than	improvement	of	internal	software	quality.	Over	time,	
this	leads	to	reduced	maintainability,	coined	“software	erosion”	or	“software	entropy”.	
	
Especially	in	competitive	markets,	investment	in	existing	software	is	often	driven	by	short-
term	business	goals.	Long-term	goals,	like	maintainability	or	understandability	are	neglected.	
Improvements	of	software	architectures	seem	to	conflict	with	these	short-term	business	and	
budget	requirements,	as	break-even	is	expected	within	short	timespans.	
	
Keeping	software	maintainable	over	time	requires	substantial	investment	in	internal	qualities,	
like	conceptual	integrity,	architectural	structures	and	crosscutting	concepts,	proper	coupling	
and	cohesion.		
	
The	systematic	approach	of	aim42	supports	evolution	and	improvement	of	software	
architectures	and	internal	quality.	aim42	helps	technical	and	management	decision	makers	to	
properly	compromise	short-term	budget	requirements	with	long-term	internal	architecture	
quality.		



	

Software Architecture Improvement - Whitepaper 

V 
2.

0 
– 

Ju
ne

 2
01

4	

1.2			Conceptual	Integrity	Requires	Attention	and	Budget	
Solving	similar	problems	should	be	handled	in	similar,	preferably	standardized	ways	within	a	
software	architecture.	This	conceptual	integrity	for	things	like	persistence,	transaction	handling,	
encryption	or	graphical	user	interface	construction	provides	a	solid	foundation	for	
maintainability,	understandability	and	longevity	of	software	systems.	
	
Conceptual	integrity	can	easily	be	violated	when	software	is	changed	under	time	and	budget	
constraints.	Especially	in	medium	or	large	teams,	communicating	the	appropriate	concepts	
requires	effort	in	form	of	documentation	or	education.	Commercial	projects	often	neglect	or	
abandon	this	communication	–	resulting	in	violations	of	conceptual	integrity,	risky	
technological	diversion	and	inconsistent	implementation	(called	software	entropy		or	
detoriation)	–	resulting	in	severe	loss	of	maintainability	and	corresponding	increase	in	
maintenance	and	operational	cost	as	well	as	a	prolonged	time	to	market.	
	
With	aim42	you	balance	improvement	and	„daily	business“:	You	will	be	able	to	continously	
deliver	new	business	functionality	(„features“)	–	yet	systematically	and	iteratively	improve	
your	system.	

1.3	Organize	Improvements	in	Phases	and	Iterations	
	
aim42	 takes	 a	 phased-iterative	 approach	 and	 differentiates	
between	 problem	 identification	 during	 the	 analysis	 phase,	
problem	 evaluation	 and	 problem	 resolution	 during	
improvement.	 Solution	 approaches	 or	 improvements	 are	
identified	continously	throughout	the	phases	(see	Fig.	1).	You’ll	
find	additional	details	on	these	phases	in	section	2.	
	
Before	any	improvement	activity	is	undertaken,	the	related	
issues	and	improvement	approaches	are	evaluated	with	respect	
to	their	estimated	cost,	benefit	and	risk	–	actively	enabling	non-
technical	stakeholders	to	argue	about	priorities	and	business	
value.		
	

 
Fig. 1. Iterative and Phased Model of 

aim42 

1.4			Rely	on	Established	Practices	and	Patterns	
aim42	relies	on	several	established	practices	and	patterns	which	have	been	used	throughout	
software	industry	for	several	years.	Arranging	those	in	the	iterative	phased	model	is	the	
innovative	idea	of	the	aim42	method.		
In	this	paper,	practice	or	pattern	names	are	set	in	capitals,	like	QUALITATIVE	ANALYSIS.	



	

Software Architecture Improvement - Whitepaper 

V 
2.

0 
– 

Ju
ne

 2
01

4	

2			An	Overview	of	Methodical	Improvement	
	
To	successfully	apply	aim42	you	should	take	to	heart	a	few	fundamental	principles:	
• Explicitely	distinguish	between	“problems”	(issues)	and	“solutions”	(improvement	options)	
• Only	fix	problems	if	you	can	identify	financial	or	business	reasons	for	this	improvement.		

Never	change	„just	because	you	can“	(even	refactorings	should	be	performed	with	a	clear	
and	explicit	purpose).	

• Verify	the	outcome	of	every	change:	Ensure	every	change	achieved	the	desired	results.		
• Strive	for	fast	feedback	on	all	changes.		
	
The	 aim42	 approach	 to	 architecture	 and	 system	 improvement	 (roughly)	 consists	 of	 the	
following	steps	(which	we’ll	later	map	to	the	three	core	phases	of	aim42:	
	

1. Collect	 all	 issues	 you	 can	 identify	 in	 a	 predefined	 time-box	 within	 the	 system,	 its	
operation	or	development	environment	and	 the	associated	organization.	Practices	 like	
QUALITATIVE	ANALYSIS,	SOFTWARE-ARCHEOLOGY	or	STAKEHOLDER-INTERVIEW	support	this	step.	
ARCHITECTURAL	UNDERSTANDING	is	an	important	side-effect	of	these	activities.	

2. Evaluate	those	issues	using	ESTIMATE-ISSUE-COST	with	respect	to	its	one-off	or	recurring	
cost.	

3. Some	problems	hide	their	real	causes	–	use	ROOT-CAUSE-ANALYSIS	to	identify	those.	
4. Together	with	technically	knowledgeable	stakeholders,	e.g.	software	architects,	COLLECT-

OPPORTUNITIES-FOR-IMPROVEMENT,	 which	 resolve	 the	 problems	 or	 causes.	 Note	 the	
potential	m:n	 relationships	 between	 issues	 and	 improvements:	 One	 issue	might	 need	
more	than	one	improvement,	one	improvement	might	solve	more	than	one	issue.	

5. Improvements	 also	 need	 to	 be	 evaluated	 or	 estimated	 with	 respect	 to	 their	 costs,	
ESTIMATE-IMPROVEMENT-COST.	The	benefit	(aka	business	value)	of	any	improvement	is	the	
cost	of	the	associated	problem	or	problems.	

6. The	 comparison	 of	 issue-cost	 (==	 benefit)	 and	 improvement-cost	 provides	 valuable	
decision	 support	 for	 technical	 and	 business	 stakeholders	 about	 which	 parts	 of	 the	
software	architecture	or	related	processes	shall	be	improved.	

	
aim42	 works	 in	 iterative	manner:	 The	 evaluation	 of	 issues	 respectively	 improvements	 might	
change	over	time	–	reflecting	modern	development	practices.	Regular	checks	of	ISSUE-LIST	and	
IMPROVEMENT-BACKLOG	 ensure	 their	 up-to-dateness.	 The	 three	 phases	 (analyze,	 evaluate,	
improve)	are	accompanied	by	the	crosscutting	planing	and	management	activities.		
	
You	find	an	overview	of	the	detailed	activities	of	each	phase	in	Figure	2.		

	



	

Software Architecture Improvement - Whitepaper 

V 
2.

0 
– 

Ju
ne

 2
01

4	

	
	
	

	
Figure	2.	Three	Phases	

	



	

Software Architecture Improvement - Whitepaper 

V 
2.

0 
– 

Ju
ne

 2
01

4	

3			An	Informal	Domain	Model	for	Architecture	Improvement	
	
When	discussing	methodical	
improvement,	a	common	
terminology	fosters	
understanding.		
	
You	find	the	required	terms	in	the	
adjacend	diagram	as	a	simple	
domain	model	–	showing	the	
most	important	concepts	and	
their	relations.	
	
Please	note	the	m:n	relation	
between	Issue	and	Improvement:		

	
Fig.	2.	Software	Architecture	Improvement	Domain	Model	

A	single	issue	might	have	more	than	one	opportunities	for	improvement	(or	solution),	and	one	
improvement	might	solve	one	or	several	issues.	
	
Issue	 Might	be	problem,	issue	or	fault	within	system	or	processes	related	to	system	

(e.g.	management,	development,	administrative	or	organizational	process)	
Cause	 Fundamental	reason	for	one	or	several	problems.	
Improvement	 Solution	or	cure	for	one	or	several	problems	or	causes.	
Cost	(of	issue)	 The	cost	(in	monetary	units,	e.g.	Euro	or	$)	of	the	problem,	related	to	a	

frequency	or	period	of	time.	For	example	–	cost	of	every	occurrence	of	
problem,	or	recurring	cost	per	week.	

Cost	(of	improvement)	 The	cost	(in	monetary	units)	of	the	improvement,	tactic	or	strategy.	
Risk	 Potential	problem	or	issue.	Remedies	can	have	associated	risks.		
	

4			Iterative	and	Phased	Model	
Improvement	should	be	a	continuous	process,	where	identification,	evaluation	and	resolution	
of	problems	 should	be	 repeated	as	 long	as	 appropriate	business	value	 can	be	 created	by	 the	
improvement.	aim42	supports	this	iterative	approach	–	see	fig.	1.	

4.1		Analyze:	Identify	Issues	and	Create	Architectural	Understanding		
The	analyze	phase		consists	of	the	collection	of	issues,	problems,	risks,	deficiencies	and	
technical	debt	within	the	system	and	its	associated	processes	–	plus	creating	ARCHITECTURAL-
UNDERSTANDING.	Focus	within	this	phase	lies	on	finding	issues.	In	addition,	one	shall	develop	and	
document	an	understanding	of	internal	structures,	concepts,	architectural	approaches		and	
important	decisions	of	the	system.	

4.2		Evaluate:	Estimate	Cost	and	Benefit		
During	the	evaluate	phase,	the	value	of	issues	and	improvements	in	business-related	terms,	like	
cost	or	effort	shall	be	estimated.	Such	estimation	results	in	comparability	of	both	issues	and	
improvements,	leading	to	transparent	prioritization.	



	

Software Architecture Improvement - Whitepaper 

V 
2.

0 
– 

Ju
ne

 2
01

4	

From	our	experience	within	various	industries,	domains	and	technologies,	this	part	of	aim42	is	
most	often	neglected	within	software	maintenance	activities	–	as	it	requires	a	combination	of	
technical	and	business	skills.	Estimation	needs	EXPLICIT-ASSUMPTIONS	about	the	relation	between	
technical	problems	or	remedies	with	(business-related)	effects,	mainly	cost	and	effort.	
Development	teams	and	technical	management	often	dislike	to	phrase	appropriate	
assumptions.	

4.3		Improve:	More	Than	Just	Refactoring	
Within	the	improve	phase,	improvements	are	applied	to	the	system	or	associated	processes.	
Rigorous	feedback	needs	to	be	gathered	to	collect	results	of	these	improvements	–	due	to	
potential	side	effects	on	other	issues	and	improvements.	
During	improvement	of	systems,	architectural	decisions	need	to	be	modified	or	adjusted	–	
resulting	for	example	in	changes	to	data	structures,	technical	infrastructure,	required	
middleware,	frameworks	or	third-party	products.	Those	modifications	sometimes	require	
fundamental	changes,	more	then	just	refactoring.		

4.4	Crosscutting	Activities:	Keep	ISSUE-LIST	and	IMPROVEMENT-BACKLOG	
Although	aim42	requires	no	formalism	or	formal	documentation,	two	deliverables	shall	be	
maintained,	the	ISSUE-LIST	and	IMPROVEMENT	BACKLOG	(see	Fig.	3).	In	the	sense	of	lean	and	agile,	
those	should	be	kept	in	the	least	formal	manner	acceptable	for	the	given	context:	

1. ISSUE-LISt:	 contains	all	 currently	 identified	 issues,	 together	with	 their	 evaluation	and	
links	to	appropriate	opportunities	for	improvement.	

2. IMPROVEMENT-BACKLOG:	 contains	 a	 list	 of	 currently	 known	 opportunities	 for	
improvement,	together	with	their	cost-	and	effort	estimates,	potential	risks	and	links	
to	the	issues	they	help	to	resolve.	

	
Fig. 3. Iteratively Collect and Evaluate Issues and Improvements 

5			Examples	of	Practices	and	Patterns	
aim42	currently	comprises	about	80	practices	and	patterns.	A	handful	of	them	shall	be	applied	
crosscutting,	the	rest	associated	with	one	of	the	phases.	The	aim42	method	guide	[1],	describing	
the	 complete	 set	 of	 practices	 and	 patterns,	 is	 currently	 under	 active	 development	 [2].	 The	
following	is	just	a	brief	excerpt	to	show	the	kind	and	nature	of	these	practices	and	patterns.	



	

Software Architecture Improvement - Whitepaper 

V 
2.

0 
– 

Ju
ne

 2
01

4	

5.1		Patterns	and	Practices	from	Analysis	Phase	
Besides	creating	ARCHITECTURAL-UNDERSTANDING,	the	main	focus	of	the	analysis	phase	lies	in	
identification	of	issues,	technical	debt	or	risks	within	the	system,	its	technical	environment,	
related	processes	and	organizations.	To	be	able	to	identify	such	problems,	one	needs	an	
appropriate	amount	of	understanding	of	the	architectural	structures,	technical	concepts	and	
source	code	of	the	system	under	consideration,	gained	by	STAKEHOLDER-INTERVIEW,	VIEW-BASED-
UNDERSTANDING	or	DOCUMENTATION-ANALYSIS.	

• 	QUALITATIVE	 ANALYSIS:	 Determine	 risks	 of	 architectural	 approaches	 with	 respect	 to	
required	quality	goals.	Described	in	[5],	widely	used	in	practice.	

• 	QUANTATIVE	ANALYSIS:	 systematic	 analysis	 of	 source	 code	metrics,	 e.g.	 size,	 coupling,	
cohesion,	and	complexity.		

• RUNTIME-ANALYSIS,	 DATA-ANALYSIS,	 ISSUE-TRACKER-ANALYSIS	 and	 DEVELOPMENT-PROCESS-
ANALYSIS.		

• PROFILING:	measure	resource	consumption	of	a	system	during	its	operation.			
• DEBUGGING:	 Identify	 the	 source	 of	 an	 error	 or	misbehavior	 by	 observing	 the	 flow	 of	

execution	of	a	program	in	detail.	Often	helps	in	understanding	the	static	and	dynamic	
structure	of	source	code.	

• SOFTWARE-ARCHEOLOGY:	 understand	 software	 by	 examining	 source	 code	 and	 code	
history.	

• ROOT-CAUSE-ANALYSIS:	 Some	 problems	 are	 only	 symptoms	 for	 underlying	 causes.	 In	
systematic	 improvement	 it	 is	often	useful	 to	 tackle	 the	root	cause	and	 the	symptom	
independently.	

	
Fig. 4. Overview of the Analyze-Phase 

	

5.2	Practices	and	Patterns	from	Evaluation	Phase	
The	main	focus	of	the	evaluation	phase	is	to	make	the	problems	and	remedies	comparable	by	
estimating	their	value	in	terms	of	business-oriented	units	–	most	often	money	or	effort.	
	



	

Software Architecture Improvement - Whitepaper 

V 
2.

0 
– 

Ju
ne

 2
01

4	

• ESTIMATE-IN-INTERVAL:	Give	a	lower	and	upper	bound	of	your	estimate.	The	difference	
between	the	two	shows	confidence	in	the	estimate.	If	this	difference	is	relatively	small,	
it	shows	high	confidence	

• ESTIMATE-ISSUE-COST:	What	one-time	or	recurring	cost	does	this	issue	generate,	either	
with	every	occurrence	or	periodically.	

• ESTIMATE-IMPROVEMENT-COST:	What	cost	and/or	effort	will	the	improvement	require?	
• IMPACT-ANALYSIS:	 What	 additional	 impact	 might	 an	 improvement	 or	 issue	 have,	 e.g.	

after-effects	 or	 side-effects?	 This	 is	 especially	 important	 in	 case	 of	 architectural	
compromises	in	context	of	conflicting	quality	goals.	

	
Fig. 5. Overview of the Evaluate-Phase 

	

5.3		Patterns	and	Practices	for	Improvement	
Plan	and	coordinate	remedies	to	eliminate	or	resolve	issues	found.	Apply	one	or	several	
improvements	to	clean	up	code,	concepts	or	processes,	reduce	cost	or	optimize	quality	
attributes.	

• ANTICORRUPTION-LAYER:	 Isolate	 clients	 from	 internal	 changes	 of	 sub-systems	 or	
modules.	

• ASSERTIONS:	 Verify	 preconditions	 to	 make	 a	 program	 fail	 when	 something	 goes	
fundamentally	wrong.	

• AUTOMATED-TESTS:	 Introduce	 automated	 tests	 (unit-,	 integration-	 or	 smoke-tests)	 to	
verify	 correct	 runtime	 behavior.	 Such	 tests	 can	 assure	 that	 improvements	 or	
refactoring	did	not	modify	(break)	desired	behavior.	

• BRANCH-FOR-IMPROVEMENT:	 Introduce	 distinct	 branches	 in	 version	 control	 system	 to	
reflect	improvements.	

• FRONTEND-SWITCH:	 Route	 front-end	 requests	 to	 either	 new	 or	 old	 backend	 systems,	
depending	on	their	nature.	

• INTRODUCE	 BOY	 SCOUT	 RULE:	 Establish	 a	 policy	 to	 perform	 certain	 structural	
improvements	 each	 time	 an	 artifact	 (source	 code,	 configuration,	 documents	 etc.)	 is	
changed.	

• ISOLATE-CHANGES:	 Introduce	 interfaces	 and	 intra-system	 borders,	 so	 that	 changes	
cannot	propagate	to	other	areas.	

• REFACTORING	 source	 code:	 Apply	 source	 code	 transformation	 that	 does	 not	 change	
functionality	of	system,	but	leaves	the	source	in	better,	more	understandable	or	more	



	

Software Architecture Improvement - Whitepaper 

V 
2.

0 
– 

Ju
ne

 2
01

4	

efficient	state.	
• REMOVE-NESTED-CONTROL-STRUCTURES:	 Re-structure	 code	 so	 that	 deeply	 nested	 or	

complicated	control	structures	are	replaced	by	semantically	identical	versions	
• SAMPLE-FOR-IMPROVEMENT:	 Provide	 concrete	 code	 example	 for	 typical	 improvement	

situations,	so	that	developers	can	improve	existing	code	easily.	
• UNTANGLE-CODE:	 Remove	 unnecessary	 complications	 in	 code,	 e.g.	 nested	 structures,	

dependencies,	dead-code,	duplicate-code	etc.	

5.4	Crosscutting	Patterns	and	Practices		
In	software	improvement	projects,	participants	should	constantly	watch	out	for	potential	
improvements		for	the	issues	identified.	On	the	other	hand,	even	when	active	in	the	
improvement	phase,	previously	unknown	issues	might	occur	–	which	need	to	be	collected.	

• COLLECT	ISSUES:	Maintain	a	central	 list	or	overview	of	known	problems,	 together	with	
their	 cost/effort	 evaluation.	 Collect	 in	 breadth-first	 manner,	 estimates	 will	 be	
performed	separately.	

• COLLECT	 OPPORTUNITIES	 FOR	 IMPROVEMENT:	 In	 all	 aim42	 phases,	 one	 should	 identify	
remedies	for	the	currently	known	problems	or	their	causes.		

• IMPROVEMENT	 BACKLOG:	 A	 list	 or	 collection	 of	 remedies	 and	 their	 cost/effort/risk	
estimation.		

• Following	 the	concepts	of	 lean	and	agile,	 teams	shall	 try	 to	 favor	FAST	FEEDBACK:	The	
later	 a	 lack	 of	 quality	 is	 identified	 the	 higher	 are	 the	 costs	 to	 fix	 it.	 Teams	 shall	
continuously	 evaluate	 the	 quality	 of	 work	 artifacts	 and	 immediately	 take	
countermeasures	or	escalate	as	early	as	possible.	

	

	
Fig. 6. Overview of Crosscutting Activities and Artifacts 

	
	



	

Software Architecture Improvement - Whitepaper 

V 
2.

0 
– 

Ju
ne

 2
01

4	

6			Industry	Experience	
Phased	and	cost-benefit	oriented	improvement,	as	described	above,	has	been	successfully	
applied	for	several	software	and	software-intensive	systems	in	various	industries.	Due	to	non-
disclosure	restrictions,	concrete	technical	and	business	details	have	to	be	omitted	for	
publication.	Nevertheless	the	main	features	of	the	aim42	method	can	be	recognized	and	the	
specific	patterns	and	practices	applied	within	the	case	studies	can	be	named.	

6.1		Facilitate	Communication	Between	IT	and	Business	Stakeholders	
As	aim42	effectively	maps	technical	issues	(like	internal	quality,	appropriate	level	of	coupling,	
cohesion,	applicability	of	technical	concepts,	adherence	to	conceptual	integrity)	to	business-
related	entities,	especially	cost,	effort	and	risk,	it	addresses	both	business	and	technical	
stakeholders.	
Therefore	aim42	reduces	terminological	friction	between	those	parties,	enabling	technical	
stakeholders	to	explain	the	need	for	architectural	improvement	to	non-technical	stakeholders,	
especially	those	responsible	for	budget-related	decisions.	This	positive	effect	mainly	results	
from	the	common	business	terms	–	like	cost	or	effort,	which	both	technical	and	business	
stakeholders	can	easily	understand	but	requires	a	solid	shared	foundation	of	underlying	
assumptions	and	trust.	

6.2	Multimedia	Framework	for	Automotive	Industry	
For	an	international	hard-	and	software	provider	in	automotive,	we	conducted	the	aim42	

analysis	and	evaluation	phases.	QUALITATIVE	ANALYSIS,	paired	with	STAKEHOLDER	INTERVIEWS	was	
combined	with	PROCESS	ANALYSIS.	Investing	approximately	15	person-days	in	analysis	plus	3	
days	in	evaluation	lead	to	a	detailed	ISSUE-LIST	and	IMPROVEMENT	BACKLOG.	
Management	stakeholders	perceived	these	phases	as	highly	successful,	as	the	improvement	
backlog	contained	several	“low	hanging	fruit”:	improvements	with	relatively	large	positive	
impact	for	a	minor	investment.	Examples	included	the	elimination	of	redundant	documentation	
within	the	distributed	development	teams,	the	unification	of	domain	terminology,	sharpening	
the	teams’	ubiquitous	language	and	some	minor,	purely	technical	improvements	in	the	
technical	frameworks.	

6.3	Telecommunication	Billing	
For	a	large	European	telecommunication	provider,	we	initially	conducted	the	analysis	and	
evaluation	phases	of	aim42,	later	included	improvement	activities.	A	STRUCTURAL	ANALYSIS	paired	
with	STAKEHOLDER	INTERVIEWS	helped	discover	a	severe	structural	problem.	Conducting	
SOFTWARE-ARCHEOLOGY	and	VIEW-BASED	UNDERSTANDING	lead	to	the	first	improvement	iteration,	
especially	improved	documentation.		
After	the	initial	aim42	analysis,	the	improvement	backlog	plus	new	documentation	was	handed	
over	to	a	development	team	that	replaced	parts	of	the	system	with	modern	technology.	Most	
issues	found	during	aim42	analysis	could	therefore	be	resolved.	

6.4	Safety-Critical	Infrastructure	Software	for	Food	Production	
An	international	hard-	and	software	manufacturer	in	food	industry	needed	to	decrease	
software	development	and	maintenance	cost	within	its	safety	critical	infrastructure	software	
(e.g.	for	production	machine	hygiene	supervision,	production-lot	reporting	etc.).	
After	detailed	STATIC	ANALYSIS,	RUNTIME-ANALYSIS	and	QUALITATIVE	ANALYSIS,	DEVELOPMENT	PROCESS	
ANALYSIS	plus	initial	ESTIMATE-ISSUE	COST,	we	performed	VIEW-BASED	UNDERSTANDING	together	with	
the	development	team.	Some	REFACTORING	lead	to	minor	improvements	in	code.	
ROOT-CAUSE	ANALYSIS	proved	that	a	major	problem	resulted	from	a	severe	lack	of	architecture	



	

Software Architecture Improvement - Whitepaper 

V 
2.

0 
– 

Ju
ne

 2
01

4	

governance.	SHEPARDING	THE	ARCHITECTURE	led	to	significant	improvements	within	the	whole	
organization	and	the	analyzed	systems	respectively.	

Acknowledgements	
Thanks	to	Michael	Mahlberg	and	Oliver	Tigges	for	their	helpful	reviews.	
	

Contact	Information	
Email:	info@aim42.org	
	
Twitter:	@arc_improve42	
	
Supported	by	innoQ	Deutschland	GmbH,	
Krischerstr.	100,	D-40789	Monheim	

Web:		
• aim42.org	

	
• innoq.com	–	our	friendly	supporter	

	

	
	
	

References	and	Further	Information	

1. aim42 Method	Guide:	http://aim42.github.io 

2. aim42 – options	for	contribution: http://aim42.org/contribute/ 

3. Resources	for	Software	Architects	–	http://arc42.org 
 
	


